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Abstract

We study the critical exponents for the susceptibility and the correlation
length for 3 continuous-spin models, which we call the border model, the dou-
ble well model and the single well model, by the method of high temperature
series. We observe variations from the predictions of universality, but in some

cases longer series may be required before firm conclusions can be drawn.



Wang and Baker [1] have recently raised anew the interest in the behaviour of the critical
indices as a function of the parameter in the continuous-spin Ising model. They studied this
problem by a Monte Carlo method. We seek to examine it by series techniques. There have
been previous studies of these sorts of questions by Barma and Fisher [2] and Baker and
Johnson [3], but our study differs from these in the approaches used and the models studied.

In our selection of which models to study, we have kept in mind the ideas of Baker [4]
who pointed out that there is reason to believe that the five cases, the Gaussian model, the
single well model, the border model, the double well model and the Ising model have values
of the correlation length index v which differ from that of neighbouring models. The current
interest in this study relates to whether or not universality holds and if it does not, can the
different models be assigned to the categories predicted by conformal invariance. We find,
with the possible exception of the single well case, where our results are least well converged,
that there is a reasonably significant difference in at least one of the critical indices between
adjacent models, in accord with the aforementioned ideas and that it is possible to identify
at least one of the allowed conformally invariant sets of critical indices with our estimates
of the critical indices for each of the models.

Specifically the models we consider are defined by the partition function
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where M is a formal normalization constant such that Z(H = K = 0) = 1, N is the number
of lattice sites, {g} is one half the set of nearest-neighbor lattice vectors, and K = J/kT
with J the exchange integral, £ Boltzmann’s constant and 7' the absolute temperature. A

normalization of the spin variable is imposed by the condition that
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By this condition we define A as a function of §, such that A(f]o) is analytic for 0 <
Jo < oo and A(O) = 1/2, limg, oo Ao/go = —2. The crossing A(gb) = 0 occurs for g, =

[[(3/4)/T(1/4)]* and is called the border model. Any value of g, such that 0 < g, < g
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corresponds to a single peaked potential in (1). We select for our single well model, g, =
0.037885 to facilitate comparison with the results of Wang and Baker. Any value of gy such
the g, < g < oo corresponds to a two peaked potential in (1), we select for our double-well
model gy = 0.467251, again to facilitate comparison with the results of Wang and Baker .
We will study the plane-square lattice, when the lattice is not mentioned, and will also give
some results for the triangular lattice. Similar calculations have also been performed for the
Ising model as a check of our method and comparable results have been observed.

First we discuss our analysis of the border model. We wish to thank B. Nickel [5] for
making available to us his unpublished 21 term series in K for the susceptibility and the
square of the correlation length for this model. We have first studied the correlation length
series by the method of Dlog Padé approximants [6]. The results for the near-diagonal
approximants which use the series terms from order 14 onward give a rather stable picture
and imply that K, ~ 0.3285+ 1 and v ~ 1.024 + 2 , where the errors are quoted in the last
place given. This result is well within the ranges quoted by Baker and Johnson [3] and Wang
and Baker [1]. We have checked the results by the method of integral approximants [6] and
find agreement. The same checks were performed on the other calculations which we report
below, but we will not say so in each case. Next we have studied the susceptibility. We find
that the critical point here has a complex structure. We have used the method of integral
approximants obtained from a second order differential equation as explained in Ref. [7] to
analyze this series for a confluent singularity. We find, when we specify the critical point as
determined above, that v = 1.78 4 0.02, but the character of the sub-dominant singularity
if any is not resolved. One possible interpretation of our results is that there might be a
strong singularity for K a little larger than K, corresponding to a value of vy, = 1.85-2.16.

If we use biased Dlog Padé approximants to estimate the susceptibility critical exponent
v, we find v ~ 1.79 £ 1 , with stability from about the 12th term onwards. The result is
to be compared with the Monte Carlo results of Wang and Baker of v ~ 1.78 £ 1. It is
less than that of Baker and Johnson v = 2.00 derived with much shorter series. We have

also analyzed the results on the triangular lattice for the 10 term border model series. Here
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the susceptibility series is better behaved than the correlation length series. We agree with
reference [3] for K. = 0.213 & 1, v = 1.91 & 2 where the apparent error estimates for
should realistically be increased to around £0.1 by cross comparison with other methods
of analysis. We add the analysis of v = 1.06 £ 2 which is consistent within error with the
plane-square lattice results. The method of conformal invariance predict a table of possible
values for v and v [8]. The possible value are further limited by modular invariance [9].
In this table, for the allowed value of ¢, the central charge, which is the key parameter of

conformally invariant theory,

6
c=1— ———— 2<m< (3)
m(m + 1)

corresponding to m = 12, [ Ay = (6,5) , Ay = (7,7) | we have v = 1.7628, v = 1.0353 which
are reasonably close to our results. We point out that for this selection the value of ¢(2 — a)?
is closer to 4 than to the value 2 shown by Wang and Baker [1] (« is the specific heat critical
exponent). We point out that there is some uncertainty in interpreting their results on this
point because their expression involves a factor (K, — K)? and they only work with one size
lattice 128 x 128. For the Ising model as they point out, a finite size shift of the order of
0.3 percent in K, is expected. Since they plot ¢(2 — a)? to within 1 percent of the critical
temperature and then extrapolate, a factor of two in the result is conceivable.

For the double-well model, we have used the series due to Baker and Kincaid [10]. They
are 10 term series and the reader is cautioned that the quality of the results may suffer from
“short series” effects. In this case we started with an analysis of the susceptibility series by
the Dlog Padé method. We found K, ~ 0.3737 4 3 , with stability found over approximants
which involve the 9 and 10 term series. This value of K, lies within the error range quoted
by Wang and Baker. We find v ~ 1.90 £+ 2. If we bias the Dlog Padé method to this value
of K. we find v ~ 1.08 £ 1. For the triangular lattice we get K, = 0.238 + 1, v = 1.85-1.90
and v = 1.07 £ 1. The value of v agrees with that of Wang and Baker within their errors.
We find for conformal invariant theories that the case for m =9 [A; = (5,4), Az = (5,5) |

gives the values v = 1.90000, v = 1.08333 which agree with our results. Here the values of
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c(2 — a)? ~ 2.0833, well within the range of values tabulated by Wang and Baker.

Finally we have studied the single-well model by the same methods as noted above.
Again we use the 10 term series of Baker and Kincaid. Analysis of the x series implies
K, ~ 0.298 £ 1 and the concomitant value of v ~ 1.735 & 30. The value of K, is in
agreement with that of Wang and Baker, but they quote a lower value v = 1.64 & 1 for
this case. Using our value of K. we find v ~ 0.93 & 2. For the triangular lattice we get
K, =0.195+2, v = 1.7-1.9 (erratic) and v = 0.93 £ 1. For the value of ¢ corresponding
tom=6[ A1 =(3,2), Ay = (3,3)] we have the values vy = 1.71428 and v = 0.95238. This
selection corresponds to a value of ¢(2 — a)? of about 3, and we repeat the same remarks
here that we made on this point concerning the border model.
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